Multi-rate Signal Processing 8. General Alias-Free Conditions for Filter Banks 9. Tree Structured Filter Banks and Multiresolution Analysis

Electrical & Computer Engineering University of Maryland, College Park

Acknowledgment: ENEE630 slides were based on class notes developed by Profs. K.J. Ray Liu and Min Wu. The LaTeX slides were made by Prof. Min Wu and Mr. Wei-Hong Chuang.

Contact: minwu@umd.edu. Updated: September 28, 2012.

Recall: Simple Filter Bank Systems

If all
$$S_k(z)$$
 are identical as $S(z)$:
 $\mathbb{P}(z) = S(z)\mathbb{I}$
 $\Rightarrow \hat{X}(z) = z^{-(M-1)}S(z^M)X(z)$
Alias Free

General Alias-free Condition

Recall from Section 7: The condition for alias cancellation in terms of $\mathcal{H}(z)$ and $\underline{\mathbb{f}}(z)$ is

$$\mathcal{H}(z)\underline{\mathbb{f}}(z) = \underline{\mathbb{t}}(z) = \begin{bmatrix} MA_0(z) \\ 0 \\ \vdots \\ 0 \end{bmatrix}$$

Theorem

A *M*-channel maximally decimated filter bank is alias-free iff the matrix $\mathbb{P}(z) = \mathbb{R}(z)\mathbb{E}(z)$ is **pseudo circulant**.

[Readings: PPV Book 5.7]

Circulant and Pseudo Circulant Matrix

(right-)circulant matrix

$$\begin{bmatrix} P_0(z) & P_1(z) & P_2(z) \\ P_2(z) & P_0(z) & P_1(z) \\ P_1(z) & P_2(z) & P_0(z) \end{bmatrix}$$

Each row is the right circular shift of previous row.

pseudo circulant matrix

$$\begin{bmatrix} P_0(z) & P_1(z) & P_2(z) \\ z^{-1}P_2(z) & P_0(z) & P_1(z) \\ z^{-1}P_1(z) & z^{-1}P_2(z) & P_0(z) \end{bmatrix}$$

Adding z^{-1} to elements below the diagonal line of the circulant matrix.

- Both types of matrices are determined by the 1st row.
- Properties of pseudo circulant matrix (or as an alternative definition):
 Each column as up-shift version of its right column with z⁻¹ to the wrapped entry.

Insights of the Theorem

Denote $\mathbb{P}(z) = [P_{s,\ell}(z)].$

(Details) For further exploration: See PPV Book 5.7.2 for detailed proof. Examine the relation between $\hat{X}(z)$ and X(z), and evaluate the gain terms on the aliased versions of X(z).

Overall Transfer Function

The overall transfer function T(z) after aliasing cancellation: $\hat{X}(z) = T(z)X(z)$, where

$$T(z) = z^{-(M-1)} \{ P_{0,0}(z^M) + z^{-1} P_{0,1}(z^M) + \dots + z^{-(M-1)} P_{0,M-1}(z^M) \}$$

(Details) For further exploration: See PPV Book 5.7.2 for derivations.

Most General P.R. Conditions

Necessary and Sufficient P.R. Conditions

$$\mathbb{P}(z)=cz^{-m_0}\left[egin{array}{cc} 0&\mathbb{I}_{M-r}\ z^{-1}\mathbb{I}_r&0\end{array}
ight]$$
 for some $r\in 0,...,M-1.$

When r = 0, $\mathbb{P}(z) = \mathbb{I} \cdot cz^{-m_0}$, as the sufficient condition seen in §1.7.3.

(Details)

(Binary) Tree-Structured Filter Bank

A multi-stage way to build *M*-channel filter bank: Split a signal into 2 subbands \Rightarrow further split one or both subband signals into 2 $\Rightarrow \cdots$

Question: Under what conditions is the overall system free from aliasing? How about P.R.?

(Binary) Tree-Structured Filter Bank

- Can analyze the equivalent filters by noble identities.
- If a 2-channel QMF bank with $H_0^{(K)}(z)$, $H_1^{(K)}(z)$, $F_0^{(K)}(z)$, $F_1^{(K)}(z)$ is alias-free, the complete system above is also alias-free.
- If the 2-channel system has P.R., so does the complete system.

[Readings: PPV Book 5.8]

Multi-resolution Analysis: Analysis Bank

Consider the variation of the tree structured filter bank (i.e., only split one subband signals)

$$H_0(z) = G(z)G(z^2)G(z^4) \Rightarrow H_0(\omega) = G(\omega)G(2\omega)G(2^2\omega)$$

Multi-resolution Analysis: Synthesis Bank

Discussions

(1) The typical frequency response of the equivalent analysis and synthesis filters are:

(2) The multiresolution components $v_k[n]$ at the output of $F_k(z)$:

- $v_0[n]$ is a lowpass version of x[n] or a "coarse" approximation;
- v₁[n] adds some high frequency details so that v₀[n] + v₁[n] is a finer approximation of x[n];
- $v_3[n]$ adds the finest ultimate details.

Discussions

(3) If 2-ch QMF with G(z), F(z), $G_s(z)$, $F_s(z)$ has P.R. with unit-gain and zero-delay, we have x[n] = x[n].

(4) For compression applications: can assign more bits to represent the coarse info, and the remaining bits (if available) to finer details by quantizing the refinement signals accordingly.

Brief Note on Subband vs Wavelet Coding

- The octave (dyadic) frequency partition can reflect the logarithmic characteristics in human perception.
- Wavelet coding and subband coding have many similarities (e.g. from filter bank perspectives)
 - Traditionally subband coding uses filters that have little overlap to isolate different bands
 - Wavelet transform imposes smoothness conditions on the filters that usually represent a set of basis generated by shifting and scaling (dilation) of a mother wavelet function
 - Wavelet can be motivated from overcoming the poor time-domain localization of short-time FT
 - \Rightarrow Explore more in Proj#1. See PPV Book Chapter 11

Detailed Derivations

Most General P.R. Conditions (necessary and sufficient)

Recall §1.7.3: sufficient condition for P.R. is $\mathbb{P}(z) = cz^{-m_0}\mathbb{I}$. \mathbb{O} To be free from aliasing, $\mathbb{P}(\mathfrak{F})$ must be pseudo circulant.

Thus
$$\mathbb{P}(3) = c_3^{m_0} \left[\begin{array}{c} 0 & I_{M-F} \\ 3^{-1} I_F & 0 \end{array} \right]$$
 for some $F \in [0, M-i]$
When $F = 0$, $\mathbb{P}(3) = I \cdot c_3^{-m_0}$ as in §1.7.3